3,973 research outputs found

    2D approach for modelling self-potential anomalies. Application to synthetic and real data

    Get PDF
    The aim of this work is to present a 2-D Matlab code based on the finite element method for providing numerical modelling of both groundwater flow and self-potential signals. The distribution of the self-potential is obtained by starting with the solution of the groundwater flow, then computing the source current density, and finally calculating the electrical potential. The reliability of the algorithm is tested with synthetic case studies in order to simulate both the electric field resulting from the existence of a leak in the dam and SP signals associated with a pumping test in an unconfined aquifer. In addition, the algorithm was applied to field data for the localization of piping sinkholes. The results show that the outputs of the algorithm yielded satisfactory solutions, which are in good agreement with those of previous studies and field investigations. In details, the synthetic data and SP anomalies calculated by using the code are very close in terms of sign and magnitude, while real data tests clearly indicated that the computed SP signals were found to be consistent with the measured values

    Light-front CQM calculations of baryon electromagnetic form factors

    Get PDF
    The parameter-free predictions for the N−P11(1440)N - P_{11}(1440) and N−P33(1232)N - P_{33}(1232) electromagnetic transition form factors, obtained within our light-front constituent quark model using eigenfunctions of a baryon mass operator which includes a large amount of configuration mixing, are reported. The effects due to small components in the baryon wave functions, such as S'- and D-wave, are also investigated.Comment: to appear in the Proceedings of the International Workshop on Hadron Dynamics with the new DAPHNE and CEBAF facilities, Frascati, Italy, 11-14 November 199

    A light-front description of electromagnetic form factors for J≤3/2J \leq {3/2} hadrons

    Get PDF
    A review of the hadron electromagnetic form factors obtained in a light-front constituent quark model, based on the eigenfunctions of a mass operator, is presented. The relevance of different components in the q-q interaction for the description of hadron experimental form factors is analysed.Comment: 6 pages, Latex, 3 Postscript figures included. Proceedings of "Nucleon 99", Frascati, June 1999. To appear in Nucl. Phys.

    Extracellular vesicle-induced differentiation of neural stem progenitor cells

    Get PDF
    Neural stem progenitor cells (NSPCs) from E13.5 mouse embryos can be maintained in culture under proliferating conditions. Upon growth-factor removal, they may differentiate toward either neuronal or glial phenotypes or both. Exosomes are small extracellular vesicles that are part of the cell secretome; they may contain and deliver both proteins and genetic material and thus play a role in cell–cell communication, guide axonal growth, modulate synaptic activity and regulate peripheral nerve regeneration. In this work, we were interested in determining whether NSPCs and their progeny can produce and secrete extracellular vesicles (EVs) and if their content can affect cell differentiation. Our results indicate that cultured NSPCs produce and secrete EVs both under proliferating conditions and after differentiation. Treatment of proliferating NSPCs with EVs derived from differentiated NSPCs triggers cell differentiation in a dose-dependent manner, as demonstrated by glial-and neuronal-marker expression

    New results from an extensive aging test on bakelite Resistive Plate Chambers

    Get PDF
    We present recent results of an extensive aging test, performed at the CERN Gamma Irradiation Facility on two single--gap RPC prototypes, developed for the LHCb Muon System. With a method based on a model describing the behaviour of an RPC under high particle flux conditions, we have periodically measured the electrode resistance R of the two RPC prototypes over three years: we observe a large spontaneous increase of R with time, from the initial value of about 2 MOhm to more than 250 MOhm. A corresponding degradation of the RPC rate capabilities, from more than 3 kHz/cm2 to less than 0.15 kHz/cm2 is also found.Comment: 6 pages, 7 figures, presented at Siena 2002, 8th Topical Seminar on Innovative Particle and Radiation Detectors 21-24 October 2002, Siena, Ital

    Pair term in the Electromagnetic Current within the Front-Form Dynamics: Spin-0 Case

    Full text link
    The frame and scale dependence of the pair-term contribution to the electromagnetic form factor of a spin-zero composite system of two-fermions is studied within the Light Front. The form factor is evaluated from the plus-component of the current in the Breit frame, using for the first time a nonconstant, symmetric ansatz for the Bethe-Salpeter amplitude. The frame dependence is analyzed by allowing a nonvanishing plus component of the momentum transfer, while the dynamical scale is set by the masses of the constituents and by mass and size of the composite system. A transverse momentum distribution, associated with the Bethe-Salpeter amplitude, is introduced which allows to define strongly and weakly relativistic systems. In particular, for strongly relativistic systems, the pair term vanishes for the Drell-Yan condition, while is dominant for momentum transfer along the light-front direction. For a weakly relativistic system, fitted to the deuteron scale, the pair term is negligible up to momentum transfers of 1(GeV/c)2^2. A comparison with results obtained within the Front-Form Hamiltonian dynamics with a fixed number of constituents is also presented.Comment: 25 pages + 7 figures; axodraw.sty included. To appear in Nucl. Phys.

    3D printing of optical materials: an investigation of the microscopic properties

    Get PDF
    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.Comment: 8 pages, 3 figure

    Charge form factor of π\pi and KK mesons

    Full text link
    The charge form factor of π\pi and KK mesons is evaluated adopting a relativistic constituent quark model based on the light-front formalism. The relevance of the high-momentum components of the meson wave function, for values of the momentum transfer accessible to CEBAFCEBAF energies, is illustrated. The predictions for the elastic form factor of π\pi and KK mesons are compared with the results of different relativistic approaches, showing that the measurements of the pion and kaon form factors planned at CEBAFCEBAF could provide information for discriminating among various models of the meson structure.Comment: 8 pages, latex, 4 figures available as separate .uu fil
    • …
    corecore